
Preprint 
UCRL-JC-141940 

AMRSim: An Object- 
Oriented Performance 
Simulator for Parallel 
Adaptive Mesh Renement 

B. Miller, B. Philip, D. Quinlan, A. Wissink 

This article was submitted to 
Joint Association for Computing Machinery Java Grande- 
International Scientific Computing in Object-Oriented Parallel 
Environments Conference, Palo Alto, CA, June 2-4, 2001 

U.S. Department of Energy n ~ a ~ ~ e n ~ e  January 8, 2001 
Livermore -[I Natio:l 
Lab ora tory 

Approved for public release; further dissemination unlimited 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited 
or reproduced without the permission of the author. 

This work was performed under the auspices of the United States Department of Energy by the 
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 

This report has been reproduced directly from the best available copy. 

Available electronically at httD: / /www.doc.gov /bridge 

Available for a processing fee to U.S. Department of Energy 
And its contractors in paper from 

US. Department of Energy 
Office of Scientific and Technical Information 

P.O. Box 62 
Oak Ridge, TN 37831-0062 
Telephone: (865) 576-8401 
Facsimile: (865) 576-5728 

E-mail: reoorts@adonis.osti.gov 

Available for the sale to the public from 
US. Department of Commerce 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 

Telephone: (800) 553-6847 
Facsimile: (703) 605-6900 

E-mail: orders@n tis .fedworld .pov 
Online ordering: htb:  / /www.ntis.gov /orderinp.htm 

OR 

Lawrence Livermore National Laboratory 
Technical Information Department’s Digital Library 

http: / /www.llnl.gov/ tid/Library.html 

http://www.doc.gov
mailto:reoorts@adonis.osti.gov
http://www.ntis.gov
http://www.llnl.gov


A M R S i m :  A n  O b j e c t - O r i e n t e d  P e r f o r m a n c e  S i m u l a t o r  f o r  

P a r a l l e l  A d a p t i v e  M e s h  R e  n e m  e n t  * 

Brian Miller, Bobby Philip, Dan Quinlan, and Andy Wissink 
Center for Applied Scienti c Computing 

Lawrence Livermore National Laboratory 
bjmiller,bobbyp,dquinlan,awiss ink@ Ilnl.gov 

ABSTRACT 
Adaptive mesh refinement is complicated by both the al- 
gorithms and the dynamic nature of the computations. In 
parallel the complexity of getting good performance is de- 
pendent upon the architecture and the application. Most 
attempts to address the complexity of AMR have lead to 
the development of library solutions, most have developed 
object-oriented libraries or frameworks. All attempts to date 
have made numerous and sometimes conflicting assumptions 
which make the evaluation of performance of AMR across 
different applications and architectures difficult or imprac- 
ticable. The evaluation of different approaches can alterna- 
tively be accomplished through simulation of the different 
AMR processes. In this paper we outline our research work 
to simulate the processing of adaptive mesh refinement grids 
using a distributed array class library (P++). 

This paper presents a combined analytic and empirical ap- 
proach, since details of the algorithms can be readily pre- 
dicted (separated into specific phases), while the perfor- 
mance associated with the dynamic behavior must be stud- 
ied empirically. The result, AMRSim, provides a simple way 
to develop bounds on the expected performance of AMR 
calculations subject to constraints given by the algorithms, 
frameworks, and architecture. 

1. INTRODUCTION 
Adaptive mesh refinement is a numerical technique for lo- 
cally tailoring the resolution of computational grids. AMR 
permits the addition of finer grids to the global computa- 
tional grid in an adaptive way so as to permit locally more 
accurate computations or the removal of global error intro- 
duced by local singularities. AMR as a numerical technique, 
is largely independent of the equations being solved, though 
numerous numerical and algorithmic issues are involved and 

'This work is funded (in part?) by the Department of En- 
ergy's Division of Mathematical, Information, and Compu- 
tational Sciences under contract number ???. 

are the subject of significant research. Unfortunately, AMR 
is not common place due largely to its inherent complexity. 

Adaptive Mesh Refinement computations are complicated 
by their dynamic nature. In the serial environment they 
require substantial infrastructures to support the regridding 
processes, intergrid operations, and local bookkeeping of po- 
sitions of grids relative to one another. In the parallel envi- 
ronment the dynamic behavior is more problematic because 
it requires dynamic distribution support and load balancing. 
Parallel AMR is further complicated by the substantial task 
parallelism, in addition to the obvious data parallelism, this 
task parallelism requires additional infrastructure to support 
efficiently[?]. The degree of parallelism is typically depen- 
dent upon the algorithms in use and the equations being 
solved. Different algorithms have significant compromises 
between computation and communication. Substantial re- 
search work is often required to  define efficient methods and 
suitable infrastructure. AMR represents an impressive op- 
portunity to demonstrate a potentially significant simplify- 
ing object-oriented mechanism to build adaptive mesh re- 
finement applications. 

The development of parallel algorithms for AMR is greatly 
complicated by the development of sufficient internal infras- 
tructure to support the complexities of the numerical meth- 
ods. Typically many details require an especially efficient 
implementation which only adds to the complexity and in- 
terferes with an understanding of the performance. This 
is especially true in addressing the complexity of parallel 
Adaptive Mesh Refinement. Our goal within this research 
work has been to build a sufficiently simple infrastructure 
to simulate the use of adaptive mesh refinement and provide 
sufficient flexibility to test many ideas about how to improve 
implementations and the AMR algorithms. 

This approach to simulate AMR processes has not been at- 
tempted previously. Existing parallel AMR work has been 
forced to cope with such detail and complexity that numer- 
ous simplifying assumptions were critical to the successful 
implementation of each (reference AMR work at  LBL, UC 
Berkeley, SAMRAI, AMR++, Overture, UT Austin, oth- 
ers?). In numerous cases object-oriented approaches were 
used to address the complexity of the implementation de- 
tails, in most cases this was critical to the successful imple- 
mentation despite numerous simplifying assumptions. For 
example, the most common among all implementations was 
the assumption of each grid wholely owned by a single pro- 

http://Ilnl.gov


Figure 1: Solid rocket fuel grain cross-section with 
grid refinement. 

Figure 2: Cross-section of eye with reflenement from 
Overture  Framework and spherical shock wave with 
refinement from SAMRAI Framework. 

cessor (no distribution of AMR patches). 

1.1 'Pdxonomy of the Adaptive Grid 
The addition of local refinement adds a grid as a new level of 
refinement to an existing AMR grid. Initially the AMR grid 
is a global grid or collection of global grids. The addition of 
local refinement adds a grid which covers a smaller region 
of the global grid, the positioning of the local refinement is 
based upon the the evaluation of error (typically error esti- 
mates) on the previous adaptive grid. Through successive 
iteration in the solution process the adaptive grid is tailored 
in this way and evolves to be specific to the reduction of 
numerical error. Typically AMR can provide equivalent res- 
olution to grids containing several orders of magnitude more 
grid points and which much less computational effort. The 
drawback is in the greater complexity of the dynamic com- 
putations and the increased sophistication of the algorithms. 

Figure 1 shows the use of adaptive mesh refinement around 
the surface of the fuel grain in a star shaped cross section of a 
solid rocket motor. Figure 2 shows the use of AMR to resolve 
flow within the eye using AMR++. Figure 2 also shows the 
use of AMR within a SAMRAI application with refinement 
to resolve shockwaves around an expanding sphere. 

2. PARALLEL AMR SIMULATOR 
AMRSim is a simulator for evaluating both object-oriented 
framework approaches and different algorithms. While it 
implements all the components of common AMR algorithms 
for elliptic, parabolic, and hyperbolic equations is does not 

provide correct results for any particular partial differential 
equation. Its purpose is as a framework to evaluate, con- 
trast, and compare different existing approaches on different 
architectures as well as develop and test new ideas. 

Since AMRSim is object-oriented, it maps particularly well 
to numerous object-oriented frameworks specific to AMR. 
The simplicity gained by not correctly solving any equa- 
tion is made up for in the additional complexity to address 
a range of implementation approaches in the handling of 
computations on AMR grids. 

Some issues are specific to framework optimization and oth- 
ers are specific to algorithms. We separate the issues asso- 
ciated with these. 

2.1 AMR Framework Optimizations 
Current object-oriented frameworks introduce numerous as- 
sumptions (restrictions) which are important to evaluate. 
Each can be expect to be justified under specific applica- 
tions or because it greatly simplifies the interface or the 
implementation of the framework itself. Each assumption is 
worthy of some evaluation of its effect on performance: 

0 distribution of grids 
Most AMR frameworks make the assumption that grids 
will not be distributed. To permit parallelism over 
more processors than grids, the existing grids are split 
up to form more grids. This process effectively can be 
considered to imply a distribution of the grid except 
that it leads to additional complexity in the domain 
calculus and has subtle effects on the behavior of some 
algorithms. Alternatively, grids can be distributed 
across processors and the computations handled as 
parallel computations local to a subset of processors 
over which the grid is distributed. This approach sim- 
plifies the user interface and maintains a constant com- 
plexity over the number of processors. But it requires 
substantially more infrastructure to support. 

0 partitioning strategies 
Where there is synchronized behavior in the process- 
ing of the AMR levels the partitioning of the grids 
in an adaptive grid can greatly effect the overall per- 
formance. The details of load balancing become par- 
ticularly subtle and complex. AMRSim permits the 
evaluation of different strategies within a simpler and 
more controlled environment, and across a broad range 
of architectures. 

2.2 AMR Algorithm Optimizations 
The modeling of performance across a broad range of AMR 
algorithms requires the artificial introduction of computa- 
tional load within specific phases of the AMR computation: 

0 computational work to solve individual grids 
All AMR algorithms require local processing of each 
grid, but depending upon the equations being solved 
and the algorithm being used, each requires a different 
amount of computation. In most algorithms the cost 
of the computation is linear in the number of points, 
but due to cache effects this is simulated using simple 



relaxation methods within AMRSim. To address the 
requirements of a range of algorithms the number of 
relaxation sweeps over the grid is an input parameter 
to the simulation. 

0 projection of data between levels (interpolation and 
restriction) 
All AMR algorithms exhibit communication between 
adaptive refinement levels as part of their solution pro- 
cess. The computational cost of this phase depends 
upon the number of levels of refinement, the number 
of patches at each level, their degree of connectedness, 
the distribution of the parent grids (relative to the 
child grids), etc. Each of these details form parame- 
ters to simulations in AMRSim. 

0 synchronization 
All AMR algorithms exhibit some synchronization be- 
tween their different phases of computation (computa- 
tion on the grids, computation of each level, interpola- 
tion of data to finer levels, restriction of data to coarser 
levels). Each algorithm differs both as to what extent 
the synchronization exists, and in between what phases 
of the solution process it is introduced. AMRSim per- 
mits the simple representation of multiple algorithms 
providing a consistent means to evaluate performance. 

The development of new algorithms to address performance 
issues can also be modeled using AMRSim. 

2.3 Simulation Inputs 
Models built using AMRSim contain multiple inputs to sim- 
plify parameter studies of their performance. In many cases 
realistic inputs to the model can be taken from existing 
AMR application codes. These application specific inputs 
include: 

number of iterations on each level 

number of sweeps on each grid 

number of levels 

number of grids on each level 

relative connectedness of grids on a level (number of 
siblings) 

number of processors over which to share grids (rela- 
tive overhead of the distribution of grids) 

cost of operations on each grid 

In each case the input parameters are dependent upon the 
both the application (the equations) and the algorithms 
being used (FAC, AFAC, AFACX, Hyperbolic Methods). 
AMRSim applications are sufficiently flexible to support pa- 
rameter evaluations. 

3. IMPLEMENTATION OF AMRSIM 
We base AMRSim on the A++/P++ array class library. 
This library greatly simplifies the development of parallel 
application codes. The array objects encapsulate the de- 
tails of the distribution of the arrays over one or more pro- 
cessors, permitting a range of distributions to be specified 
and evaluated easily. 

3.1 AMRSim built using A+/P+tclass library 
A++/P++ is a portable C++ array class library for se- 
rial/parallel computers. A++ represents the serial array 
class and P++ represents the parallel array class, both have 
an identical interface. It provides a simple syntax for the 
creation and manipulation of arrays, similar to FORTRAN 
90. In the serial environment the arrays represent contigu- 
ous storage and can be shared with other FORTRAN or C 
applications and provide for indexing, indirect addressing, 
complex views (sub-arrays), dynamic manipulation, etc. In 
the parallel environment the arrays form distributed objects 
whose distribution can readily be specified and manipulated 
dynamically. Within the array class, overloaded operators 
define a conventional array syntax with the usual array se- 
mantics of FORTRAN 90 like operations. In the parallel en- 
vironment the operators handle communication, as required, 
for correct operation. A++P++ thus provides a simple and 
elegant mechanism that allows serial code to be reused in the 
parallel environment. It also provides a relatively high level 
of interface from which to optimize both serial and parallel 
performance using the array’s serial and parallel semantics 
(see section ??). 

We use the P++ array class library within AMRSim to 
manage the details of the distribution and inter-processor 
communication of distributed array data associated with 
each grid. Do as best represent the computations indepen- 
dent of any array class processing, all computations are done 
using the C data stored within each array object and specifi- 
cally not using the array class’s array operators. In doing so 
we generate the identical performance represented by pre- 
processing using a preprocessor built using ROSE I?]. 

3.2 Algorithmic Components 
AMR algorithms can be readily classified and common com- 
ponents identified and modeled separately. Within AMR- 
Sim these individual components with some examples from 
the numerical solution of PDE’s are: 

0 Projection (common to all AMR algorithms) 

0 Interpolation (common to all AMR algorithms) 

0 Local grid solution (common to all AMR algorithms) 

0 Synchronization (common to all AMR algorithms but 
different for each) 

- no synchronization (AFAC, AFACx) 
- synchronization by level (FAC) 
- synchronization with CFL constraint (hyperbolic 

met hods) 

3.3 Speci cation of speci c algorithms 
While posing an analytical description of individual AMR 
algorithms using this classification their interdependence is 
difficult to analyze for a parallel computer because of the 
dynamics of the application and the difficulty in accurately 
modeling the interactions between processors. To simplify 
this step we model the individual AMR algorithm compo- 
nents with simulations. This combined approach to the per- 
formance modeling can be expected to be more realistic than 
an analytic model because it absorbs the numerous complex 



f o r  (level=O; l e v e l  < maxhvel ;  leve l++)  
c 

1 
SolveLevel(i1 ; 

for  (level=O; l e v e l  < maxlevel; l eve l++)  
c 

1 
ghostBoundaryUpdate 0 ; 

Figure 3: Example Specification of AFACX Solver. 

details of the interaction of multiple processors. It is in ad- 
dition much more flexible than any of the existing AMR 
frameworks in permitting a more varied set of algorithms to 
be evaluated and compared. Further, many critical inputs 
to the simulation can be taken directly from simpler existing 
serial AMR applications (e.g. number of grids, number of 
levels, etc.). 

4. RESULTS 
We demonstrate the use of AMRSim to model the load bal- 
anced computation phase common to all AMR algorithms. 
Some AMR algorithms enforce additional synchronization 
upon the ordering of the processing by level (e.g. FAC, 
and hyperbolic methods) while some to not (e.g. AFAC, 
AFACx). The results demonstrate the case of no additional 
synchronization and the effect of a load balancing based 
upon the equal distribution of grid points absent the effects 
of communication; typical with AMR computations. 

figure* 

5. CONCLUSIONS 
The development of adaptive mesh refinement is complex 
due to its dynamic behavior and the expectations placed 
upon performance. This is especially problematic for paral- 
lel adaptive mesh refinement and has forced numerous sim- 
plifications and assumptions to be made in the development 
of object-oriented frameworks. AMRSim has been used to 
look at a few of these assumptions and provides a useful tool 
for the evaluation of numerous approaches to performance 
specific to individual architectures and algorithms. We have 
shown that there are advantages and disadvantages to the 
distribution of the AMR grids in the parallel environment 
and that specific algorithms can be expected to perform dif- 
ferently as a result. 

Current work in progress for the final paper will look at 
the effects of the interpolation and restriction components 
within the AMR algorithms and put together a more com- 
plete picture of the performance of specific algorithms on 
different architectures. 



I I I I I I I I I I I I 

0 a 16 24 32 40 4a 56 64 72 a0 aa 96 
number of processors 

Figure 4: Performance of Load Balanced Computation for AFACx Solve on grids. 




